
Values and data types (module 2)
Data Types:

Non- primitive types are also known as Composite type or reference type

Data Types, their Sizes, and default values

Data Type size in bytes size in bits default value

byte 1 8 0

char 2 16 '\u0000'

short 2 16 0

int 4 32 0

long 8 64 0 or 0L

float 4 32 0 or 0.0f

double 8 64 0 or 0.0d

1 byte = 8 bits

In Java, the size of a boolean is not precisely defined in terms of memory because its actual storage

depends on how the JVM implements it. However, When used individually, a boolean typically takes 1

byte (8 bits) in memory.

Range of data types:

If a data type’s size is k bits then its range is : -2k-1 to 2k-1-1

Range of byte: -128 to 127

Range of short: -2¹⁵ to 2¹⁵-1 (-32,768 to 32,767)

Range of int: -2³¹ to 2³¹-1 (-2,147,483,648 to 2,147,483,647)

Range of long: -2⁶³ to 2⁶³-1 (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

Range of float: ≈ -3.4 × 10³⁸ to 3.4 × 10³⁸

Range of double: ≈ -1.7 × 10³⁰⁸ to 1.7 × 10³⁰⁸

**DO NOT MEMORIZE THIS. (KEEP THE FORMULA IN MIND)

** ALWAYS STORE PHONE NUMBERS IN USING long data type

In modern java, Floating-point types (float, double) store values in IEEE 754 format and have a much

wider range.

Im
p

lic
it

 T
yp

e
C

o
n

ve
rs

io
n

/C
as

ti
n

g
 o

r

C
o

er
ci

o
n

Ex
p

lic
it

 T
yp

e
C

o
n

ve
rs

io
n

/C
as

ti
n

g

Suffix for literals

1. f or F (Float Literal)

• Used to denote a float literal.

• Without it, decimal numbers are treated as double by default.

• 15.5 is double by default, but we can use f or F as suffix to make it float: 15.5f or 15.5F

2. d or D (Double Literal)

• Used to denote a double literal.

• Optional, because decimal numbers are treated as double by default.

• 15.5 is double by default, We can write 15.5D or 15.5d but it is optional as it’s already double

3. l or L (Long Literal)

• Used to denote a long literal.

• Without it, integer literals are treated as int by default.

• L is preferred over l(small L) because l looks similar to 1 (digit one).

• Example: 15L , 120L, 15 is int by default but 15L is 15 as long data type.

Keywords in java:

Java has 52 keywords, which are reserved words that cannot be used as variable names, class names, or

method names. (DO NOT MEMORIZE)

abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends final finally float
for goto if implements import
instanceof int interface long native
new package private protected public
return short static strictfp super
switch synchronized this throw throws
transient try void volatile while
module open

Note: goto and const are reserved but not used (no functionality) in Java.

Literals:

Integer Literals: 10, 20, -50, 0

Real Numbers/ Floating point literals: 12.5, -50.5, 0.0, .7

Character Literals: ‘A’ , ‘B’, ‘C’, ‘#’, ‘*’ , ‘5’

String Literals: “Hello”, “Yo”, “I am Iron Man”

Boolean Literal: true , false

null literal: null

Identifiers: int a=10;

 class Apple{

}

Identifier/Variable Naming Rules:

Can contain letters (A-Z, a-z), digits (0-9), _ (underscore), and $ (dollar sign).

Must start with a letter, _, or $ (cannot start with a digit).

Cannot be a Java reserved keyword (e.g., int, class, public).

Java is case-sensitive (myVar and myvar are different).

Must not contain space

Variable Declaration:

int a,b,c; or int a,b,c;

Variable pre-declaration and initialization:

int a,b,c;

a=10;

b=20;

c=30;

Declaration and initialization

int a=10, b=20, c=30;

Chained Initialization:

int a = 10, b, c, d;

b = c = d = a;

**For chained initialization, all variables must be declared beforehand.

ASCII (American Standard Code For Information Interchange)

‘A’ to ‘Z’ : 65 to 90

‘a’ to ‘z’ : 97 to 122

‘0’ to ‘9’ : 48 to 57

 Space : 32

Type Conversion/ Type Casting:

 (1) Implicit type conversion: smaller data type to larger data type

 Example 1: char ch= ‘A’; Example 2: int a=10;

 int b=ch; float f=a;

 Example 3: double b= 10; Example 4: int a= ‘A’;

 (2) Explicit type casting: larger type to smaller type (Lossy conversion possible)

 Example 1: int a= (int) 13.5; Example 2: char ch= (char) 66;

 Example 3; float f=(float) 15.6d; Example 3. int a= (int) 5L;

Data type of result operations: The result of an expression with multiple data types always gets promoted

to the largest type among operands.

int a=10; float f= 10.4; double k=12.4;

double k=a+f+k;

int p=12; float m=2.5f; char ch= 'A';

float f= p+m+ch;

int a=10, b=20, c=30;

int k= a+b+c;

However, if a non-primitive type is involved, result is stored in non-primitive one.

Example: int a=10; double d=20.5; String t= “Hello”;

 String s= a+d+t;

Exception: char + char = int

char ch1= 'A', ch2= 'B';

System.out.println(ch1+ch2); output: 131 (65 + 66)

That means to store char + char in a char variable, we need explicit type casting

char ch = (char) 'A' + 'B';

Exception on Exception (Updation using +=)

 += updates a variable

char ch= 'A';

ch+= 2;

System.out.println(ch); output: C

Safe side:

instead of writing ch=ch+2, write ch+=2 as sometimes you might get error due old java version.

Write either ch+=2 or ch= (char) (ch+2);

It’s better not writing ch=ch+2 without explicit casting, but you can surely write ch+=2 without any worry.

** We will discuss about += (shorthand/ Arithmetic-Assignment operators) in next chapter.

Initialization:

 (1) Static Initialisation: directly assigning values:

 int a=10;

 float f=1.4f;

 (2) Dynamic Initialisation: getting value through a process

 int a= 5+5;

 float f= 1.0f + 0.4f;

 double d= 15.6+12.5;

Statement and expression:

 int k= a+b+c+d

Type of expressions:

 (1) Pure Expression: Involves data of same type

 Example 1:

 int a=10, b=15, c=20;

 a+b+c

 Example 2: 12.3 + 15.5 + 0.7

 (2) Impure Expression: Involves data of more than one data type.

 Example 1: int a=10; float b=15.5f; double c=20.0, k;

 a+b+c

 Example 2: 10 + 12.7 + 'A'

* Separators: comma ,

 parenthesis ()

 Curly braces { }

 Square Brackets []

* Punctuators: Terminator ;

 Member operator . (dot)

 Ternary operator ?

21/03/2025 Subhasis Das

Expression

Statement

https://github.com/Subhasis-Das-CS/

